
Trace Match & Merge: Long-Term
Field-Of-View Prediction for AR Applications

Adam Viola*, Sahil Sharma*,
Pankaj Bishnoi*

University of Massachusetts at Amherst, USA

Matheus Gadelha, Stefano Petrangeli,
Haoliang Wang, Viswanathan Swaminathan

Adobe Research, USA

Abstract—Photorealistic Augmented Reality (AR) experiences
require high bandwidth. Streaming approaches have already
been proposed to guarantee a low-latency and yet high quality
experience for the end user despite this bandwidth requirement.
To provide the best streaming performance, these approaches
usually require accurate prediction of the Field-Of-View (FOV)
of the AR device to prioritize the download of digital objects that
are most likely to be viewed by the user. While current prediction
approaches can be successfully applied for short prediction
horizons (<2 seconds), it remains challenging to predict the
user behavior for longer horizons. In this paper, we therefore
present the Trace Match & Merge (TMM) algorithm for the
FOV prediction in AR applications. TMM employs an improved
nearest-neighbor-based approach that examines the traces of
previous users of a particular AR scene, and merges the most
similar segments to predict the future position and rotation of
the AR device. Particularly, user traces are selected based on
the overlap of the users’ FOV, modeled as a pyramid. Extensive
experimental results on an open-source AR exploration dataset,
composed of 4 AR scenes explored by 50 users, confirm the
benefits of the proposed solution. Particularly, TMM consistently
outperforms a set of popular baselines in terms of predicted
position, rotation and objects-in-view – especially for challenging,
long-term prediction horizons (>2 seconds).

Index Terms—Augmented Reality, Field-Of-View, Viewport,
Prediction, Streaming

I. INTRODUCTION

Augmented Reality (AR) is an interactive experience de-
fined by the integration of digital objects into a real-world
environment. Existing AR experiences are powered by a
device with a display, such as a smartphone, tablet, or headset,
that overlays digital objects over the physical environment
within the device Field-Of-View (FOV). AR can enable novel
interactive and immersive experiences in a variety of domains
such as entertainment, manufacturing, education and others.
Development toolkits such as ARKit by Apple and ARCore
by Google have recently made AR accessible to anyone
with a tablet or smartphone. However, the high bandwidth
requirements of photorealistic AR creations can hinder the
mainstream adoption of these high quality experiences. Many
of the photorealistic models and materials that make up
detailed AR objects have sizes ranging from tens to hundreds
of megabytes. Since AR experiences cannot begin without
their digital objects, the lengthy download phase before an
AR experience starts may result in a poor user experience.

*These authors contributed equally to this work.

To mitigate this latency problem, streaming techniques –
similar to those successfully applied in the video domain
– have already been proposed in the AR domain [1], [2].
These techniques usually prioritize the download of digital
objects near the AR device FOV, and select the optimal Level-
Of-Detail (LOD) needed to guarantee a high quality AR
experience. Although these systems can successfully reduce
start-up latency, they do not take into consideration the future
behavior of the user in the AR scene. With an accurate
prediction of the AR device FOV several seconds in the future,
an AR streaming solution could prioritize the download of
digital objects at the optimal LOD based on the expected FOV
of the user. As a result, this would guarantee an even better
final user experience.

Wang et al. describe an approach for AR FOV prediction
that predicts the nearest digital object in the FOV of the
user [3]. Although results are promising, the identity of the
single nearest digital object is not always enough, as many AR
experiences feature multiple digital objects within the field-of-
view at the same time. Beyond this approach, the problem
of FOV prediction for AR applications has not been well
investigated yet. Several FOV prediction methods have been
proposed to support the delivery of 360-degree videos [4]–
[6]. Similarly to AR, 360-degree video viewers are only
able to view a particular region of the 360-degree video at
any given time. 360-degree video streaming techniques take
advantage of this fact by varying the streamed quality of
each region of the video based on the viewer’s current and
predicted FOV. However, the AR FOV prediction problem
features several unique challenges that remain unaddressed
by existing FOV prediction methods tailored for 360-degree
videos. First, AR enables users to move with six degrees of
freedom (6DOF), in contrast to classical 360-degree videos
that only support rotational movements (3DOF). Second, AR
experiences are made of a sparse set of discrete objects that
are blended with the physical world, while 360-degree videos
are a “dense” medium, as the user is totally immersed in the
virtual environment. Third, AR experiences are often highly
interactive. Digital objects that react to particular actions of
the user can complicate the FOV prediction task.

In light of the above challenges, we present in this paper the
Trace Match & Merge (TMM) algorithm, a nearest-neighbour-
based approach for predicting the FOV in AR applications.
TMM uses a scene-specific index of trace segments and the

Fig. 1. The AR scenes composing the ACE dataset [3] and the user traces (in red). Each scene is explored by 50 different users.

recent user position history to locate similar position segments
of previous users. This selection is performed by comparing
the FOV of the current and past users – modelled as a
pyramid, and finding past traces with the highest degree of
similarity with that of the current user. The selected segments
are then appropriately merged into a final trace that is used
for prediction. Extensive experimental results on the ACE
dataset [3], an open-source AR exploration dataset composed
of 5 AR scenes explored by 50 users (Figure 1), confirm
the benefits of our solution. Our TMM approach outperforms
several baseline prediction algorithms across different AR
scenes exhibiting different navigation patterns, especially for
challenging, longer prediction horizons (> 2 seconds).

The remainder of this paper is organized as follows. Section
II presents related work on streaming and prediction for
immersive media. Sections III details the proposed TMM ap-
proach, while Section IV presents a comprehensive analysis of
the performance of TMM when compared to several baselines
on the ACE datasets. Finally, Section V concludes the paper
and presents several directions for future work in this domain.

II. RELATED WORK

A. AR Streaming

To improve user experience in bandwidth-intensive AR
applications, Petrangeli et al. [1] propose an HTTP adaptive
streaming (HAS) based framework for AR applications. It
works by dynamically deciding which AR objects in the AR
scene should be streamed and at what quality level. This
choice is determined by computing an object utility value,
which depends on the position of the object with respect to
the viewer and the visual improvement a given level of detail
provides with respect to the amount of bandwidth necessary
to stream it. The proposed streaming framework improves the
startup latency as compared to a benchmarking download-and-

play strategy by 90%. Experiments performed on a simple AR
scene comprised of 4 objects also show a reduction in the
amount of delivered data by 79%, with minimal impact on
the user experience – users are able to view objects at the
optimal visual quality for almost 80% of the time. Noh et al.
propose a cloud-assisted system for AR streaming in wireless
environments [7]. An enhanced scene manifest is employed,
which allows the client to select the best LOD level of the
mesh to improve the visual quality contribution while taking
into account the available bandwidth. Park et al. develop a 3D
tiling system for the efficient streaming of AR volumentric
media [8]. They develop a utility metric to dynamically select
the best 3D tile, based on bandwidth conditions and the
distance of the user from the digital object. van der Hooft
et al. employ the latest point cloud compression standards to
compress AR volumetric videos and a rate adaptation heuristic
to select the best quality level for a multi-object AR scene [2].

Accurate, long-term FOV prediction can be leveraged to
improve the performance of these AR streaming works, and
provide an even better user experience.

B. AR FOV Prediction

Wang et al. present a novel user visual attention FOV pre-
diction algorithm for AR applications [3]. Instead of predicting
the 6DOF of the AR device, the authors use the users’ histor-
ical movements and the positions of the digital objects to pre-
dict the nearest object within view. This approach outperforms
baseline algorithms traditionally employed for 360-degree
video FOV prediction (see Section II-C), including dead-
reckoning-based [6] and linear regression-based [4] methods.
This work also introduces the AR Content Exploration (ACE)
Dataset, the first open-source dataset in this domain, which
contains data from 50 users exploring 5 different AR scenes.
We use the same dataset for our experiments.

C. 360-Degree Video FOV Prediction

360-degree video FOV prediction is an area of research
closely related to FOV prediction for AR. Although, as high-
lighted before, there are significant differences between AR
and 360-degree video, both technologies require streaming
systems that can benefit from FOV prediction.

Motivated by the need for accurate prediction of the FOV
in free viewpoint videos, Mavanklar et al. [6] present an
online prediction method based on a Dead-Reckoning (DR)
approach. The DR method makes FOV predictions purely
based on the user’s historical trajectory. The method assumes
the user is going to maintain the current angular velocity,
which is either read from the input device or computed from
successive measurements of the viewing device. Petrangeli et
al. [5] propose an algorithm to solve the problem of long-
term FOV prediction of 360-degree videos, with prediction
horizons varying from 1s to 10s. This is in contrast to most
existing approaches, which usually focus on short-term (200
– 500ms) prediction horizons. The authors use a spectral
clustering-based approach on a dataset of 16 public videos
viewed by 61 users to cluster similar rotation trajectories,
and use the generated clusters for prediction. This algorithm
outperforms simpler linear regression and augmented linear
regression approaches, due to the non-linear nature of the
users’ movements. In Fan et al. [9], the authors develop a
fixation prediction network that uses sensor features (viewer
orientation) and content features (image saliency and motion
maps) to predict the viewer FOV for 360-degree videos. Image
saliency maps are generated offline using pre-trained CNNs
for image classification. Similarly, motion maps are generated
offline by analyzing Lucas-Kanade optical flow over video
frames. An online LSTM combines the offline features with
view orientation data to predict the future FOV. This method,
applied in a real 360-degree video delivery scenario, is able to
produce comparable video quality to existing methods while
providing a shorter initial buffering time and a reduction in
bandwidth consumption up to 36%. Bao et al. [4] collect
motion data from 153 subjects watching 360-degree videos
and find strong short-term correlation across the movements of
various users. Motivated by this finding, the authors predict the
movements of the viewers through traditional linear regression
and a neural network-based model that predicts the viewer’s
FOV, together with a prediction confidence score. The work
also proposes several evaluation metrics, such as failure ratio
and ratio of missing pixels, which can be used to compare
different algorithms in this domain. Li et al. [10] propose
two FOV prediction models: trajectory-based and heatmap-
based models, by both considering the individual FOV of the
user and the historical FOV patterns of other users as well.
Several approaches are considered, as LSTM, MLP mixing
and mixture of experts. Experimental results confirm that the
models utilizing other users’ information bring substantial
performance gains over those utilizing the current user’s data
only. A Recurrent Neural Network (RNN) model is proposed
by Liu et al. [11]. The FOV prediction model is used in combi-

nation with cloud rendering to offload the most computational
expensive tasks from the client. The RNN model shows good
prediction accuracy for short horizons. A similar approach is
used by Hou et al. [12]. The authors use an LSTM model to
predict the viewing probability of tiled 360-degree videos, by
employing a large, proprietary dataset for training. Estimation
of the saliency of 360-degree media can also be used to
drive FOV prediction. Chao et al. introduce a novel saliency
estimation model for omnidirectional images [13], which takes
into account the distortion introduced by the equirectangular
projection when performing this estimate. Romero Rondon et
al. use an RNN architecture that fuses both absolute position
and video saliency information to perform the prediction [14].
The so-called TRACK architecture merges embedding from
position and saliency information using an LSTM architecture,
which shows good prediction power up to 5 seconds. A
clustering-based method is used by Nasrabadi et al. [15],
which operates in the quaternion space for better accuracy.
Similarly to this work, we also operate in the quaternion space
when predicting the rotation component of the user’s FOV.
Depending on the video, this method shows good performance
accuracy up to 5 seconds. The Sparkle algorithm is developed
by Chen et al. with interpretability in mind [16]. A different
model is trained for each user, which aims to capture how
a particular user explores the VR video. Ban et al. [17]
propose a KNN-based Viewport Prediction (KVP) approach
that considers both user-specific and cross-user behavior to
predict the future viewport. Given the user’s recent fixation in
Euler angles, KVP uses linear regression as its initial fixation
prediction, which is later amended by a KNN-based method
that finds the K nearest fixations using a sphere distance. A
probability vote mechanism examines the K nearest fixations
to determine the viewing probability of each video tile. In
conjunction with a tile-based adaptive streaming system, the
method achieves an average relative improvement in viewport
prediction accuracy of 48.1% over a linear regression baseline.
Park et al. exploit video semantic information and historical
viewing patterns for prediction [18]. The authors propose
SEAWARE, a semantic aware view prediction system, which
solves this problem by performing video semantic analysis
and recording it in a modified video manifest hosted on the
server. SEAWARE performs better than existing 360-degree
video streaming solutions in terms of accuracy and efficiency.

III. TRACE MATCH & MERGE ALGORITHM

To solve the problem of long-term FOV prediction in AR
applications, we present in this section the Trace Match and
Merge (TMM) algorithm, a nearest-neighbor-based approach
for predicting the 6DOF of an AR device. At a high level,
TMM makes a prediction of the user’s future position and
rotation by examining the recent position history of the current
user – we refer to this position history as a segment. TMM
then locates similar segments among the traces of past users
who have explored the same scene, and merges these selected
traces to create a new trace that is used to predict the behavior
of the current user.

A. Input and Output Data

As input, TMM expects a list of user traces x1, x2, ..., xN .
Each user trace xi is a pair of sequences of length li: a
sequence of vector positions p

(1)
i , p

(2)
i , .., p

(li)
i and a sequence

of quaternion rotations q
(1)
i , q

(2)
i , .., q

(li))
i . These values corre-

spond to the six degrees of freedom (position and rotation) of
the AR device as it explores the AR scene over time.

Given a user trace:

x = ([p(1), p(2), .., p(li)], [q(1), q(2), .., q(li)])

The goal of the TMM algorithm is to predict the future H
time-steps of the trace:

y = ([p(li+1), p(li+2), .., p(li+H)], [q(li+1), q(li+2), .., q(li+H)])

representing the future user position in the AR scene. It is
worth noting that TMM builds a scene-specific model, since
user behavior is expected to vary across AR scenes, as each
scene can potentially have a different layout.

B. Trace Segments Creation

TMM exploits similarities in the exploration patters of past
users of a particular AR scene to predict the position of
the current user in future time steps. Initially, this similarity
is computed on the position component only of the user
trace. First, TMM divides each past user trace into so-called
segments using three parameters: size z, stride s, and dilation
d. The size z defines the number of consecutive time-steps
in each segment (e.g., 2-seconds segements). The dilation d
determines the number of time-steps skipped between each
time-step in the segment. The stride s controls the number of
time-steps in the trace between the start of each segment. As
a result, the total time encompassed by a segment is equal to
d · z, and the number of segments generated by a single trace
is approximately the length of the trace divided by s. This
process produces n segments S1, S2, ...Sn. Each segment Si

contains (z × 3) values, where each row of Si is a position
vector.

Brute-force nearest neighbor search over all segments would
require O(zn) time. To accelerate the search, TMM stores
the segments in a ball tree data structure, which enables
nearest-neighbor search in O(z log n) time. However, ball
trees (and other exact nearest neighbor data structures) require
the segment distance metric to satisfy the triangle inequality.
For distance metric d and arbitrary segments Si, Sj , Sk, the
triangle inequality is satisfied iff:

d(Si, Sk) ≤ d(Si, Sj) + d(Sj , Sk)

To satisfy this requirement, TMM uses the squared Frobenius
norm, which is equivalent to the sum of the pairwise squared
Euclidean distance between each position vector of the seg-
ments:

d(Si, Sj) = ||Si − Sj ||2F

The segment creation step of the TMM algorithm is visualized
in step 1 of Figure 2.

At prediction time, TMM builds a segment of size z using
dilation d from the user’s recent position history and utilizes
the ball tree to fetch the k nearest position segments.

C. Segment Relevance and Matching

Although the k segments provided by the nearest neighbor
search exhibit similar patterns in terms of positional com-
ponents compared to the position of the current user trace,
their actual FOVs may still be dissimilar due to different
orientations. To narrow down the segments and select only
those exhibiting a similar FOV to that of the user, TMM
examines the current FOV of the user and compares it to the
FOV at the last time-step of the k segments (steps 2 and
3 in Figure 2). TMM explicitly compares FOVs using the
volume of intersection between their pyramids of vision. Since
the pyramid of vision has infinite depth, it is truncated at an
arbitrary depth of 100 meters to enable volume computation.
TMM computes the volume of intersection between two
pyramids of vision using a Monte Carlo approximation. Ptot

points are sampled uniformly within the pyramid of vision
of the user; of these Ptot points, Pint points lie inside both
pyramids of vision. The volume of intersection is given by:

Vint =
Pint

Ptot
Vpyr

where Vpyr refers to the volume of the user’s truncated
pyramid of vision, and Vint denotes the volume of the inter-
section. TMM ranks the k segments by their FOV intersection
volume, and retains only the top-m segments with the greatest
intersection. This process is highlighted in steps 3 and 4 of
Figure 2.

It is worth noting that the calculation of the FOV intersec-
tion volume is computationally expensive and does not satisfy
the triangle inequality. Therefore, it cannot be used as the
distance metric in the nearest neighbor search; for each trace
prediction, the volume is computed only k times.

D. Merging Segments

To produce a final prediction, TMM fetches the future
position and rotation of each of the top-m segments selected
at the previous step and merges them. As for traditional k-
nearest neighbor approaches, this merging step helps reducing
the variance of the prediction carried out by TMM.

The position and rotation at each time-step are determined
independently using an average across the futures of the top-
m segments. Since rotation is represented by a quaternion,
a simple arithmetic mean would not be able to capture the
intuitive average rotation, partially because a quaternion q
and its negation −q represent the same rotation. As a result,
TMM uses Markley’s quaternion average to merge the rotation
values [19], which produces an optimal quaternion average
using the eigenvalue/eigenvector decomposition of a matrix
created from the quaternions. This average minimizes the

Fig. 2. Trace Match & Merge (TMM) uses a ball tree of trace segments (1) and the recent user position history (2) to locate similar position segments of
previous users (3). The futures of the segments with the most similar field-of-view are merged (4) and translated (5) for continuity with the user’s trace.

sum of the squared Frobenius norms of the attitude matrix
differences:

argmin
q∈S3

m∑
i=1

||A(q)−A(qi)||2F

where A(qi) denotes the attitude matrix of quaternion qi and
S3 denotes the unit 3-sphere. An example of the merging
process is pictured in steps 4 and 5 of Figure 2.

The initial position of the merged prediction is equal to
the average of the initial positions of the futures of the top-
m segments, which is not necessarily close to the current
position of the user. To improve the performance of TMM for
short prediction horizons, the position values of the merged
prediction are translated to enable continuity between the
current user trace and its predicted trace. The difference in
the prediction between steps 4 and 5 of Figure 2 provides an
example of this translation. An analogous translation is made
for rotation continuity between the current user trace and its
predicted trace.

Formally, let p(l) and q(l) correspond to the current vector
position and unit quaternion rotation of the user, respectively,
and let p

(l+1)
m , ..., p

(l+h)
m and q

(l+1)
m , ..., q

(l+h)
m correspond to

that of each time-step of the merged prediction. Let op =

p(l) − p
(l+1)
m and oq = q

(l)
m q

(l+1)∗
m be the vector position

offset and unit quaternion rotation offset. The vector positions
p
(l+1)
f , ..., p

(l+h)
f and quaternion rotations q

(l+1)
f , ..., q

(l+h)
f of

the final prediction are given by:

p
(l+i)
f = p(l+i)

m + op

q
(l+i)
f = oqq

(l+i)
m

IV. EXPERIMENTAL RESULTS

In this section, we present an analysis of the TMM predic-
tion algorithm. We first briefly introduce the ACE Dataset [3]
used for our experiments (Section IV-A), the baseline pre-
diction algorithms employed for comparison (Section IV-B)
together with the evaluation metrics (Section IV-C), and the
main analysis of the results (Section IV-D).

Fig. 3. The No Prediction (NP) approach simply assumes that the position at
time t will be the same at time t+H , with H being the prediction horizon.
The red line indicates the exploration pattern of a particular user in the Solar
System scene, the gray box indicates the actual FOV.

A. Dataset

We utilize the ACE dataset [3], which contains the position
and rotation of 50 users each exploring 5 different AR scenes.
Figure 1 illustrates the 5 different AR scenes. Each scene has
been created with different characteristics in mind, in order
to validate whether different scene topologies would result
in different exploration patterns from the users. The Solar
System and Apples scenes present objects positioned in a very
regular manner (a straight line and a circle, respectively). As
it can be noted from the exploration patterns in Figure 1
(red lines), these scenes result in very consistent and similar
explorations patterns across different users. On the other hand,
the Toy Room and Fiction scenes present objects disposed
with a less obvious exploration pattern in mind. Intuitively, the
exploration patterns for these scenes will be harder to predict
than then Solar System or Apples scenes. In this paper, we do
not consider the Food scene, which contains user interaction
events that are not recorded in the ACE dataset.

B. Baselines

We consider several baselines to compare with our proposed
FOV algorithm, following the same approach used by Wang
et al. [3]. The simplest baseline is No Prediction (NP), which

Fig. 4. The Linear Regression (LR) approach fit a linear regression model
on the recent history of position and rotational values of the user trace. The
yellow line indicates the prediction computed by this method over time.

Fig. 5. In the Dead Reckoning (DR) baseline, we assume the user will
maintain the current translational and rotational velocity between t and t+H ,
with H being the prediction horizon. The green line indicates the prediction
obtained by using this method.

assumes that the user’s field of view will not change between
time t and time t+H , with H being the prediction horizon.
The qualitative behavior of the NP approach can be seen in
Figure 3, where the red line indicates the path taken by the user
in the scene and the gray camera indicates the FOV of the user.
The second baseline is a Linear Regression (LR) approach that
applies linear regression on the recent trace history to predict
the future position and rotation. Qualitatively, the resulting
prediction is visualized in Figure 4. Intuitively, this method
will perform the best for short prediction horizons and/or when
the user movements do not present abrupt changes over time.
We also consider a Dead Reckoning (DR) algorithm, which
assumes the user will maintain the current translational and
angular velocity. This velocity is estimated using a moving
average over the last several time-steps. DR is a popular
baseline for FOV prediction methods for 360-degree videos,
and the prediction results are qualitatively similar to those of
linear regression, as it can be seen in Figure 5.

While the previous approaches have been extensively used
in the 360-degree FOV prediction literature, we also consider
a more complex baseline based on a Random Forest Regressor

(RFR), which uses a set of decision trees termed as estimators.
In order to properly train the model, we follow the following
strategy. First, we consider a fixed history of time-steps
(referring to both position and rotation of the user trace) to
be given as input to the regressor. To speed-up training, rather
than considering all the contiguous time-steps in the history,
we skip every 10th time-step. Since data points in the ACE
dataset are collected every 60th of 1 second, this sampling
operation helps training the regressor faster without losing
important information on the user movements. To simplify
training and obtain faster inference timing, given the history
used as input at time t, the regressor only predicts position
and rotation at time t+H , rather than the whole sequence of
time-steps.

All experiments use optimal hyperparameters tuned for
each scene, which were selected for each model using cross
validation and Bayesian optimization.

C. Evaluation Metrics

We quantitatively evaluate each prediction model using two
metrics: (1) position and rotation error and (2) objects-in-view
error, which we detail next. In the result section, we evaluated
both metrics at multiple prediction horizons, i.e., 0.5s, 1s, 5s,
and 10s.

The position and rotation error metrics measure the differ-
ence in position/rotation between the ground truth trace (i.e.,
the actual position and rotation of the user) and the predicted
traces (i.e., the predicted position and rotation of the user as
computed by either TMM or one of the baseline methods). In
the result section, we report the average errors computed over
the interval t; t+H . The position error is computed using the
Euclidean distance, and it is expressed in meters. The rotation
error is computed as the angle between the ground truth and
the predicted quaternions:

dr(qgt, qpr) = cos−1(2(qTgt qpr)
2 − 1)

and it is expressed in radians.
While the absolute error gives a clear indication of the

absolute performance of the prediction algorithm, we also use
the objects-in-view error to get a more direct understanding
of the impact of the algorithm on the FOV prediction task.
The objects-in-view error compares the digital objects in the
FOV as computed using the ground truth trace with respect to
the objects in the FOV as computed using the predicted trace
(obtained using a prediction algorithm). Based on these two
sets of objects, we compute precision, recall and F1 score. In
this context, a high precision entails that most of the predicted
objects are indeed in the FOV, and is a measure of bandwidth
efficiency (i.e., how much bandwidth would be wasted to
potentially retrieve objects that are not in the FOV of the
user). Recall is directly connected to the user experience: if
the prediction cannot accurately determine all the objects in
view, the user may have a poor AR viewing experience, since
some objects would not be streamed. The F1 score ties both
precision and recall together to provide a single value with

which to compare the performance of the different algorithms
on the FOV prediction task.

D. Results and Analysis

To clearly showcase the benefits of the proposed TMM
method, we first consider the performance on the traces from
the Fiction scene which, as reported by Wang et al. [3], are the
hardest ones to be predicted, given the position of the objects
do not show a clear, intuitive exploration pattern. The results
of the experiments for this scene are presented in Figure 6. The
x-axis reports the prediction horizon, while the y-axis reports
the position/rotation errors and the F1 score for the different
methods.

We observe that all approaches, except for the Random
Forest Regressor, result in very low position and rotation errors
(left and center graphs in Figure 6) for shorter horizons smaller
than 2 seconds. As expected, the corresponding F1 scores
for these models are close to 1 (right graph in Figure 6).
The simpler baselines (linear regression and dead reckoning)
perform the best at this short prediction horizons, closely
followed by our TMM approach. Nevertheless, as soon as the
prediction horizon increases, these methods present a signif-
icant drop in performance, and provide significantly inferior
performance compared to our TMM and the Random Forest
Regressor, across all evaluation metrics. The NP, LR and DR
baselines only use the recent position and rotation history of
the particular user under consideration to make predictions,
and therefore fail predicting the long-term behavior of the
user. The results from TMM and RFR confirm that exploiting
cross-user behavior is beneficial for predicting FOV at longer
prediction horizons. Both approaches result in similar position
error (for longer horizons), with TMM outperforming RFR
in terms of rotation error. In turn, this translates into much
higher F1 scores for TMM. As explained in Section IV-C, the
F1 score provides a clear indication of the performance of a
prediction algorithm: higher values indicate that TMM is able
to retrieve most of and only the objects that are potentially
viewed by the user.

In Figure 7, we present the F1 scores for all models across
the Apples (left), Toy Room (center) and Solar System (right)
scenes. The results for the Apples and Toy Room scenes follow
similar trends as those for the Fiction scene: NP, LR and DR
methods can provide good performance for short prediction
horizons, but the models’ performance rapidly deteriorates for
prediction horizons larger than 2 seconds. On the other hand,
both TMM and RFR result in high F1 score values for larger
horizons, with TMM providing the best results overall. This
indicates that TMM is able to capture the global exploration
patterns of a particular AR scene, and re-use this knowledge to
successfully predict the long-term behavior of a new user. As
expected, the NP method provides the worst results for longer
horizons. In the Solar System scene (right graph in Figure 7),
we observe that most of the models are able to maintain a
high F1 score, even for longer prediction horizons. This is
mostly due to the simple linear layout of the objects in this
scene (see Figure 1), which causes most users to move in

an approximately straight line. In this situation, even simpler
prediction algorithms are able to provide satisfactory results.
Nevertheless, for longer horizons, TMM is always the best or
near-best model in terms of F1 score.

These results highlight how the proposed TMM approach
is effective in predicting the future user behavior and is able
to provide the most consistent, high-performing results both
across different scenes and more challenging, longer-term
prediction horizons.

V. CONCLUSIONS

We presented in this paper the Trace Match & Merge
algorithm, a novel approach for the FOV prediction in AR
applications. Our approach employs a modified nearest neigh-
bor approach that takes into consideration the unique charac-
teristics of AR applications. First, TMM performs a search
to find the past user traces closely resembling the trace of the
user under consideration. Next, TMM merges those traces into
one, which is used to predict the future FOV of the user. Ex-
tensive experimental results show that our approach provides
better performance in terms of predicted position, rotation
and objects-in-view compared to several baseline algorithms,
especially for longer, more challenging prediction horizons.
To conclude, we present several areas of improvements to be
pursued as future work in this domain.
6DOF Position and Object Access Sequence. The TMM
approach solely employs the 6DOF position of the user to per-
form a prediction. Even higher performance could be achieved,
especially for longer prediction horizons, by considering the
sequence of objects viewed by past users, in addition to their
6DOF positions.
Scene topography. User exploration patterns are highly im-
pacted by the topology and the disposition of the AR objects.
Approaches that take into account the topography of a scene,
e.g., by employing path planning techniques with the objects
as goals, can be used in this context. These techniques can also
be useful when the amount of training data is not abundant,
for example when a new scene is created.
Model Generalization. While TMM is used on a per-scene
basis, it is worth investigating whether it is possible to use
data across scenes to create a general model that can provide
reasonable performance irrespective of the scene. This model
can then be fine-tuned for each specific AR scene.
DNN-based Approaches. Albeit not presented in the main
experimental section of this paper, we also experimented
with an LSTM-based sequence-to-sequence model that uses
the recent 6DOF history of a user to predict the future
position. Preliminary results obtained using this approach are
comparable to those obtained using linear regression- and
dead-reckoning-based approaches. This is likely due to the
limited amount of training data, which is not large enough for
this specific task. As previously mentioned, a possible solution
to this problem would be to aggregate the information from
multiple scenes, and generate a cross-scene model that can
work in combination with other scene-specific models.

Fig. 6. Position error (left), Rotation error (center) and F1 score (right) for the Fiction scene of the ACE Dataset. Our TMM approach results in low position
and rotation errors, especially for longer prediction horizons (>2 seconds), producing the highest F1 score across all methods.

Fig. 7. F1 Scores for the Apples (left), Toy Room (center) and Solar System (right) scenes of the ACE dataset. Our TMM method provides the most consistent
performance across all scenes and prediction horizons.

REFERENCES

[1] S. Petrangeli, G. Simon, H. Wang, and V. Swaminathan, “Dynamic
adaptive streaming for augmented reality applications,” in 2019 IEEE
International Symposium on Multimedia (ISM), 2019, pp. 56–567.

[2] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and
H. Hellwagner, “Towards 6dof http adaptive streaming through point
cloud compression,” in Proceedings of the 27th ACM International
Conference on Multimedia, ser. MM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2405–2413. [Online].
Available: https://doi.org/10.1145/3343031.3350917

[3] N. Wang, H. Wang, S. Petrangeli, V. Swaminathan, F. Li, and
S. Chen, “Towards field-of-view prediction for augmented reality
applications on mobile devices,” ser. MMVE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 13–18. [Online].
Available: https://doi.org/10.1145/3386293.3397114

[4] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos,” in
2016 IEEE International Conference on Big Data (Big Data), 2016, pp.
1161–1170.

[5] S. Petrangeli, G. Simon, and V. Swaminathan, “Trajectory-based view-
port prediction for 360-degree virtual reality videos,” in 2018 IEEE
International Conference on Artificial Intelligence and Virtual Reality
(AIVR), 2018, pp. 157–160.

[6] A. Mavlankar and B. Girod, Video Streaming with Interactive
Pan/Tilt/Zoom. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 431–455. [Online]. Available: https://doi.org/10.1007/
978-3-642-12802-8 19

[7] H. Noh and H. Song, “Cloud-assisted augmented reality streaming
service system: Architecture design and implementation,” in 2020 IEEE
International Conference on Visual Communications and Image Pro-
cessing (VCIP), 2020, pp. 363–366.

[8] J. Park, P. A. Chou, and J.-N. Hwang, “Volumetric media streaming for
augmented reality,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–6.

[9] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Fixation prediction for 360 video streaming in head-mounted virtual
reality,” in Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, 2017, pp. 67–72.

[10] C. Li, W. Zhang, Y. Liu, and Y. Wang, “Very long term field of
view prediction for 360-degree video streaming,” in Proceedings - 2nd
International Conference on Multimedia Information Processing and
Retrieval, MIPR 2019. Institute of Electrical and Electronics Engineers
Inc., Apr., pp. 297–302.

[11] X. Liu and Y. Deng, “Learning-based prediction, rendering and associa-
tion optimization for mec-enabled wireless virtual reality (vr) network,”
IEEE Transactions on Wireless Communications, pp. 1–1, 2021.

[12] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive adaptive
streaming to enable mobile 360-degree and vr experiences,” IEEE
Transactions on Multimedia, vol. 23, pp. 716–731, 2021.

[13] F.-Y. Chao, L. Zhang, W. Hamidouche, and O. Déforges, “A multi-fov
viewport-based visual saliency model using adaptive weighting losses
for 360-degree images,” IEEE Transactions on Multimedia, vol. 23, pp.
1811–1826, 2021.

[14] M. F. R. Rondón, L. Sassatelli, R. A. Pardo, and F. Precioso, “Track: a
multi-modal deep architecture for head motion prediction in 360-degree
videos,” in 2020 IEEE International Conference on Image Processing
(ICIP), 2020, pp. 2586–2590.

[15] A. T. Nasrabadi, A. Samiei, and R. Prakash, Viewport Prediction
for 360° Videos: A Clustering Approach. New York, NY, USA:
Association for Computing Machinery, 2020, p. 34–39. [Online].
Available: https://doi.org/10.1145/3386290.3396934

[16] J. Chen, X. Luo, M. Hu, D. Wu, and Y. Zhou, “Sparkle: User-aware
viewport prediction in 360-degree video streaming,” IEEE Transactions
on Multimedia, pp. 1–1, 2020.

[17] Y. Ban, L. Xie, Z. Xu, X. Zhang, Z. Guo, and Y. Wang, “Cub360:
Exploiting cross-users behaviors for viewport prediction in 360 video
adaptive streaming,” in 2018 IEEE International Conference on Multi-
media and Expo (ICME), 2018, pp. 1–6.

[18] J. Park, M. Wu, K.-Y. Lee, B. Chen, K. Nahrstedt, M. Zink, and

https://doi.org/10.1145/3343031.3350917
https://doi.org/10.1145/3386293.3397114
https://doi.org/10.1007/978-3-642-12802-8_19
https://doi.org/10.1007/978-3-642-12802-8_19
https://doi.org/10.1145/3386290.3396934

R. Sitaraman, “Seaware: Semantic aware view prediction system for
360-degree video streaming,” in 2020 IEEE International Symposium
on Multimedia (ISM), 2020, pp. 57–64.

[19] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

	Introduction
	Related Work
	AR Streaming
	AR FOV Prediction
	360-Degree Video FOV Prediction

	Trace Match & Merge Algorithm
	Input and Output Data
	Trace Segments Creation
	Segment Relevance and Matching
	Merging Segments

	Experimental Results
	Dataset
	Baselines
	Evaluation Metrics
	Results and Analysis

	Conclusions
	References

